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Abstract 
Humans comprehend natural language sentences in real time, 
processing the elements of each sentence incrementally with 
immediate interpretation, while working within the limitations 
of general cognitive abilities. While much research has been 
devoted to human sentence comprehension, a detailed 
computational theory of how this is done has been lacking. In 
this paper we explore some fundamental principles of human 
sentence comprehension, propose a novel computational 
theory of knowledge representation and incremental 
processing to comprehend sentences using general cognitive 
abilities, and discuss results of an implementation of this theory 
in a robotic agent using the Soar cognitive architecture. We 
then explore the theory’s implications for future work in 
various areas of cognitive science. 

Keywords: sentence comprehension; construction grammar; 
immediate interpretation; ambiguity resolution; cognitive 
architecture; language and the brain. 

Introduction 
Humans comprehend natural language sentences in real time, 
processing the elements of each sentence incrementally with 
immediate interpretation, while working within the 
limitations of general cognitive abilities. Much research has 
been devoted to human sentence comprehension. 

Psycholinguists have measured many aspects of human 
language processing. A classic study (Tanenhaus, Spivey-
Knowlton, Eberhard, & Sedivy, 1995) shows humans commit 
to the meanings of words and phrases before a complete 
sentence has been processed, doing immediate interpretation. 
A theory called chunk-and-pass (Christiansen & Chater, 
2016) argues that this is necessary to comprehend sentences 
using humans’ limited working memory capacity. However, 
theories on immediate interpretation and chunk-and-pass 
processing do not have computational implementations. 

Linguists have built complex theories of syntax and 
semantics. Theories of construction grammar have been 
developed within cognitive linguistics for several decades 
(Hoffman & Trousdale, 2013). While they provide an 
approach that is more cognitively plausible than much 
traditional linguistic theory, only a few have computational 
implementations (Eppe, Trott, Raghuram, Feldman, & Janin, 
2016; Steels, 2013) to allow humans to interact with robots. 

 
1 The term Common Model of Cognition has replaced the term 
Standard Model of the Mind used in the original referenced paper. 

However, these do not do incremental processing or use 
general cognitive abilities.  

In the artificial intelligence community, current work on 
natural language processing is concentrated on statistical 
techniques using deep neural networks (Young, Hazarika, 
Poria, & Cambria, 2018). Recently some work has been done 
on combining symbolic and neural network techniques (Mao, 
Gan, Kohli, Tenenbaum, & Wu, 2019). These techniques do 
not reliably produce grounded, actionable meanings for each 
individual sentence.  

General computational models of cognition called 
cognitive architectures have been developed to model a wide 
variety of psychological and neural theories of cognition. A 
few prominent models have emerged which have been 
implemented and applied in a large number of research 
projects. Recently three of these architectures have been 
combined into an abstract model called the Common Model 
of Cognition (CMC; Laird, Lebiere, & Rosenbloom, 2017).1 
The CMC has also been related to the structure of the brain 
(Steine-Hanson, Koh, & Stocco, 2018). Previous work on 
modeling language comprehension with cognitive 
architectures (Lewis & Vasishth, 2005; Lewis, 1993) does 
not include full comprehension or immediate interpretation. 
Our implementation uses the Soar cognitive architecture 
(Laird, 2012). 

Researchers have measured brain activity while subjects 
listen to readings of naturalistic language (J. Brennan, 2016; 
J. R. Brennan & Hale, 2019; Schwartz & Mitchell, 2019). 
These studies compare brain measurements to measurements 
on a variety of computational models of language processing. 

 
Figure 1: The meaning of a sentence 
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However, these models are rather simple, not doing 
grounded, end-to-end comprehension. 

The research reported here addresses the lack of a complete 
and detailed computational theory of how human sentence 
comprehension works. 

We propose a computational theory of sentence 
comprehension that attempts to explain both the functional 
capabilities of human sentence comprehension and the 
process humans use, implemented using domain-general 
cognitive abilities. At the core of this theory is the idea that 
human comprehension involves actively constructing the 
meaning of each sentence incrementally in small steps, where 
each step integrates an additional element of form-meaning 
correspondence (Goldberg, 2013) into the developing 
meaning representation (Christiansen & Chater, 2016), and 
immediately grounds that element to the agent’s knowledge 
of the world. Figure 1 is a diagram of comprehending a 
simple sentence, which we discuss in detail below. 

In this paper we explore high-level characteristics of 
human language comprehension which serve as constraints 
to define our computational theory. We explain our theory of 
how linguistic knowledge can be represented and operated on 
in a manner that fits these constraints, and how it fits with 
existing theories of sentence comprehension, then describe a 
concrete implementation of the theory. Finally we discuss 
how this theory may contribute to further research on human 
language processing, both at a symbolic level of cognitive 
processing and in terms of how such a computational model 
might be implemented in the brain. 

Characteristics of Human Comprehension 
We focus on three levels of human sentence comprehension: 
its functional capabilities as seen from outside, characteristics 
of its processing on the inside, and the underlying 
mechanisms by which the processing is accomplished. 

Functionality 
From a functional perspective, the most important 
characteristic is what we call end-to-end comprehension. By 
this we mean that the comprehension system produces, for 
each individual input sentence, an internal meaning 
representation that the human agent can act upon. The 
resulting action might be responding to the speaker, adding 
new knowledge, performing some action in the world, or any 
combination of these things. In addition, the production of 
this actionable meaning must be performed in real time, 
meaning fast enough that the hearer can react in an 
appropriate way in the real world. 

Another key functional aspect of human comprehension is 
its generality. This means that the linguistic knowledge that 
a person has can be composed in many ways to allow 
understanding of many new sentences that have never been 
heard or seen before. Often this characteristic of human 
language ability is called creativity (Chomsky, 1965) or 
productivity, but these terms imply language production. We 
will use the term generality to refer to the corresponding 
aspect of language comprehension. 

Processing 
From a processing perspective, human comprehension is 
characterized by immediate interpretation. Both 
psychological (Tanenhaus et al., 1995) and neuroscience 
(Hagoort, 2019) experiments show that humans do not wait 
until the end of a sentence to construct meaning. Rather, for 
each input word all available knowledge is used to construct 
as much meaning as possible, including grounding the 
meaning representation, when possible, to the agent’s current 
perception, action, and world knowledge. 

Immediate interpretation is necessary (Christiansen & 
Chater, 2016), yet it imposes significant constraints on the 
processing algorithm. Human language contains many local 
ambiguities, so when there are multiple options available, the 
processing system must make its best guess at each point. At 
times, it will turn out that a choice is not consistent with 
subsequent input, so that the system must make a correction 
or local repair (Lewis, 1993) to its ongoing representation of 
the meaning of the sentence. Both the initial decision about 
which option to commit to, and any later repair, provide local 
ambiguity resolution. This capability is essential to avoid an 
exponential increase in ambiguity.  

Underlying Mechanisms 
There has been much controversy over the years about 
whether the human brain has innate language ability or 
whether language processing is a skill using domain-general 
cognitive abilities. Here we assume the latter, and explore 
whether humanlike comprehension is possible with the tools 
of general cognitive abilities. 

To accomplish this, we need a theory of what those 
cognitive abilities are and how they work. Cognitive 
psychology has developed theories of these abilities, and a 
substantial amount of research in cognitive neuroscience has 
explored how these abilities might be implemented in the 
brain. Often, however, that work does not directly provide 
computational mechanisms for cognition that can be 
implemented on a computer. 

The CMC and the architectures it is based on include 
several major mechanisms based on psychological theory, 
including: working memory, procedural memory, long-term 
declarative memory, interfaces to perception and action, and 
a temporal processing cycle (Laird et al., 2017). A challenge 
for our theory is to see whether and how these domain-
general mechanisms can be used to comprehend language in 
a humanlike way.  

One consequence of using general mechanisms based on 
human cognition is that humans have limitations on memory 
and processing capacities, leading to bounded rationality 
(Simon, 1996), which places limits on the kinds of algorithms 
that can be performed, especially in real time. A successful 
computational theory of human comprehension must work 
within these constraints.  



A Computational Theory of Comprehension 
A computational theory of human comprehension must 
satisfy the constraints outlined above. For each sentence it 
must produce a meaning representation which can be acted 
upon. This meaning representation must be made up of small 
elements that can be composed in many ways. These 
elements must be integrated and grounded immediately, and 
any resulting local ambiguities must be resolved. All this 
must be accomplished using the abilities of, and within the 
limitations of, a model of human cognition. The theory can 
be summarized in what we call the incremental meaning 
construction hypothesis: 

 
The meaning of a sentence is constructed in small 
increments in a repeating cycle in which each new 
pattern of form evokes a new element of meaning, and 
these elements are grounded and composed into 
larger and larger elements until the full sentence 
meaning has been constructed. 

 
To clarify this idea, consider the example in Figure 1. At 

the bottom we see a simple sentence that might be addressed 
to a robot. At the top we see a message to the operational part 
of the robot telling it to perform its “pick up” action on an 
indicated object it sees in the environment. In between are 
eight meaning elements that have been evoked by the input 
word sequence and grounded to the agent’s long-term 
knowledge and current perception. These elements are 
constructed in the order shown by the numbers. 

Functionality 
Our theory proposes that an active process constructs, word 
by word and piece by piece, the meaning of each sentence. 
Each piece is an instance of an abstract pairing of form and 
meaning called a construction (Goldberg, 2013). A 
construction relates a particular linguistic form, which may 
be a word or a larger syntactic structure, to the meaning it 
evokes. Constructions fall into two major categories: those 
that represent lexical items and those that represent 
compositions of one or more simpler constructions into larger 
units. 

At each step a single construction is selected from a large 
inventory of possibilities, instantiated and elaborated, 
integrated into a data structure representing the current 
comprehension state, and then grounded as possible to the 
agent’s short- and long-term knowledge of the world. 
Occasionally new input shows that a selected construction 
was not the correct one, and a local repair to the 
comprehension state is performed (Lewis, 1993). When the 
complete meaning of a sentence has been constructed, a final 
process called message formatting extracts the essential 
elements of grounded meaning and assembles an actionable 
message that the surrounding agent then acts upon. This 
process provides end-to-end comprehension, and the 
composition of meaning from small pieces provides 
generality. 

Processing 
How is the construction process implemented? Figure 2 gives 
a sketch of the sequence of operations needed to do the 
incremental construction of the meaning of a sentence. 
Processing begins in (1) and proceeds until the final message 
is put out in (9). Blocks (2) through (7) implement two nested 
loops that build up the meaning representation incrementally. 
The word cycle does word-by-word processing, attending to 
a new word in (2) and repeating the construction cycle in (3) 
through (6) as often as necessary. Each word cycle will select 
one lexical construction and possibly one or more composite 
constructions. When (4) finds that no more constructions 
apply, this word cycle is complete. If (7) finds that the end of 
the sentence has been reached, it proceeds to (8) to complete 
the processing. Otherwise, the next word is attended to, and 
the cycles continue. 

Each form-meaning construction selected in (3) is 
integrated into the comprehension state in (5) and grounded 
in (6). The first selection in (3) for each word cycle will be 
for a lexical construction matching the current input word. 
After that the selection in (3) looks for the best composite 
construction to match the current state.  When no matching 
composition is found, the process goes on to (7). After the 
last word has been processed, the message formatting 
operation in (8) summarizes the whole comprehension that 
has been built as an internal message the agent can act on. 

Grounding is a key step in this process. When a sentence 
refers to an object that is currently within the agent’s world 
model, the comprehension process identifies this object, and 
the message formatting need only pass along a unique 
internal identifier of the object to the rest of the agent, as 
Figure 1 illustrates. When an object is not currently in the 
agent’s model of the world, than a description of the object’s 
properties must be passed along to be grounded to perception 
at some later time. 

As the meaning of each construction is integrated into the 
comprehension state and grounded, we have immediate 
interpretation, and selection and local repairs provide local 
ambiguity resolution. The end result is to construct and 
ground the meaning representation incrementally. Typically 
incremental comprehension is thought of as processing the 
input one word at a time (Lewis & Vasishth, 2005; Lewis, 
1993), as implemented by the word cycle. Our theory 
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Figure 2: Sequence of operations 

 
       

 



provides the finer-grained concept of a construction cycle, as 
shown in (3) through (6) of Figure 2. With all this working in 
a model of comprehension, we have satisfied our constraints 
to model humanlike comprehension. 

Underlying Mechanisms 
Figure 3 gives a sketch of mechanisms used for the three 
major phases of each construction cycle. The Selection phase 
encodes all the contextual information the agent has, 
including the dialog context, the current input word, and the 
current comprehension state, as input to a Pattern Memory, 
which chooses which known construction best fits the current 
state. This memory operates in two modes: one to match a 
lexical pattern and one to match a composite pattern in the 
current comprehension state. It retrieves a unique identifier 
for the construction that best matches the current context. 

The Integration phase uses the retrieved identifier as a cue 
to access the Structure Memory, which retrieves the complex 
data structures needed to integrate the construction into the 
comprehension state and evoke its meaning representation. 
The Grounding phase then connects the new state to the 
agent’s long-term knowledge and current perception. Thus 
data flows around the loop of these memories once for each 
construction cycle, gradually building up the complete 
meaning of the sentence. When the test in (7) determines that 
the end of the sentence has been reached, the Format Message 
operation assembles the message that the agent will act on. 

An Implementation of the Theory 
To test whether the theory we have outlined is 
computationally feasible, and to explore the implications of 
the theory, we have written a computer program we call Lucia 
(Lindes, 2018; Lindes & Laird, 2016) using the Soar 
cognitive architecture (Laird, 2012), which implements the 
theory in detail. 

Functionality 
Linguistic knowledge in Lucia is defined in a grammar built 
on principles of construction grammar and implemented 
using a specific theory called Embodied Construction 
Grammar (ECG; Bergen & Chang, 2013). This approach is 
grounded in decades of research in cognitive linguistics, and 
provides a formalism for representing meanings and the 
increments of form-meaning pairing that are needed to 
compose sentence meanings incrementally while giving 
much generality. Figure 1 is a small example of how 
meanings are represented. 

The Lucia implementation is embodied in a larger robotic 
agent capable of acting in the physical world (Lindes, 
Mininger, Kirk, & Laird, 2017). The Agent Knowledge 
shown in Figure 3 is shared between the comprehension 
system and the operational part of the agent that knows how 
to act on the messages Lucia produces. The entire agent is 
capable of using interactive instruction with naturalistic 
language to learn new tasks and perform them in the world. 
This embodiment gives us a way to confirm that the theory 
actually provides comprehension accurate enough for an 
agent to act on correctly. Lucia correctly comprehends 
several hundred naturalistic sentences for teaching games, 
puzzles, and robot navigation tasks, showing that it achieves 
end-to-end comprehension. 

A key feature of human comprehension is its generality: its 
ability to correctly comprehend many sentences that have 
never been seen or heard before. Lucia will never match the 
generality of human comprehension, but it can correctly 
comprehend several orders of magnitude more sentences than 
were used to develop it. 

Processing 
Lucia uses a novel incremental comprehension algorithm 
along the lines shown in Figures 2 and 3. It implements the 
construction cycle by building one construction at a time, 
integrating each with the comprehension state, and grounding 
it to the agent’s knowledge. It includes techniques for 
resolving ambiguities, both at the points where new 
constructions are selected and using local repairs after the fact 
when needed. 

Inspection of internal operation of the Lucia algorithm 
shows that it does indeed do immediate interpretation and 
local ambiguity resolution (Lindes & Laird, 2017). It 
provides additional psycholinguistic plausibility by 
corresponding to the chunk-and-pass theory (Christiansen & 
Chater, 2016), which suggests how language comprehension 
can work within the limits imposed by human working 
memory. It does not yet implement explicit working memory 
limits, but implicitly its selection of which construction to 
instantiate next uses only the top few levels of the 
comprehension state. 

Underlying Mechanisms 
Lucia is implemented entirely with the general cognitive 
abilities represented by the memories and processing of the 
CMC and the Soar cognitive architecture. Key to 
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Figure 3: Phases of a construction cycle 



implementing an algorithm of this sort in a cognitive 
architecture is how the declarative and processing knowledge 
shown conceptually in Figures 2 and 3 is represented in the 
actual memories of the architecture. 

Lucia encodes the linguistic knowledge for the Pattern 
Memory and Structure Memory in Figure 3 as production 
rules in Soar’s procedural memory. These rules are generated 
automatically by a program that translates them from the 
ECG representation (Bryant, 2008) of the agent’s grammar. 
The Comprehension State and Context Information in Figure 
3 are both stored in Soar’s working memory. The short-term 
part of the Agent Knowledge is also stored in working 
memory, with the long-term part in Soar’s semantic memory. 
The Encoder, Integration, Grounding, and Message 
Formatting modules are built from additional hand-coded 
production rules. 

Using production rules for linguistic knowledge provides a 
mechanism that allows for rapid processing to simulate real-
time comprehension as a developed skill. Each construction 
has a production rule that recognizes its form pattern, and 
these collectively implement the Pattern Memory. Then 
additional construction-specific rules fire to provide the 
retrieval of information from the Structure Memory. 
Measurements of its speed of processing in simulated real 
time, based on a cognitive cycle taking about 50ms (Laird, 
2012), gives a comprehension rate of 138 words/minute, 
which is comparable to human speaking rates. 

Future Work and Implications 
Lucia currently has several weaknesses with respect to 
accurately modeling human comprehension. Like the CMC 
and Soar, it includes no explicit model of the limitations of 
human working memory. Neither does it provide a non-
deliberative mechanism, similar to human priming effects, to 
use dialog and situation context to select among multiple 
senses of a word. We are exploring representing 
constructions in Soar’s semantic memory and using 
activation schemes, including recency, frequency, spread, 
fan, and attention, to support context-biased retrieval. 

 Psycholinguistic and neuroscience evidence suggests that 
the human brain does some form of prediction of what will 
come next during language comprehension (Kuperberg & 
Jaeger, 2016). Prediction, in both the brain and our model, 
can speed up processing. We have not yet implemented this 
aspect in Lucia, but we have a plan to do so as we further 
develop the system. 

Brain measurements show one key attribute that is 
challenging to our model. There are properties of EEG 
signals during comprehension called the N400 and P600 
(Delogu, Brouwer, & Crocker, 2019), which occur roughly 
400ms and 600ms, respectively, after the onset of a word. 
However, new words are coming in every 200-300ms or so. 
Thus there appears to be processing related to a word that 
goes on after another word or two have appeared in the input. 
This is hard to justify based on our model, where each word, 
and each construction, is processed to completion before 
going on to the next. 

One way to resolve this issue would be to develop a 
mechanism in the architecture to allow overlap between the 
processing of multiple words. This would be a major 
departure from most current cognitive architecture theory. 
Another option is to implement prediction: a prediction 
initiated by one word would later be confirmed or 
disconfirmed by a later word, producing processing 
correlated to the original word but happening after other 
words have been at least partially processed. This fits at least 
one theory of what causes these signals in humans 
(Bornkessel-Schlesewsky & Schlesewsky, 2019). 

An essential feature of human language processing is the 
acquisition of linguistic knowledge. At the present time the 
grammar in Lucia is built by hand by adding to the grammar 
files written in the ECG formalism (Bryant, 2008). We do, 
however, have a nascent theory of how humanlike acquisition 
could be added to our model. Our grammar has been 
developed in small increments, each increment deriving from 
a piece of knowledge that was missing to process a particular 
sentence. These knowledge increments then have the 
generality to apply to many more sentences. Our theory is that 
human acquisition also happens in similar small increments 
with generalization, corresponding to research on language 
acquisition (Tomasello, 2003). 

Our model specifies details of the use of different memory 
systems and the time course of accessing them. This has the 
potential of suggesting new ways to study language 
processing in the brain. Neuroscientists have gathered 
detailed data on the spatial and temporal patterns of neural 
activation in the brain during language processing 
(Kemmerer, 2015). One theory of the neurobiology of 
language (Hagoort, 2019) emphasizes the “immediacy 
principle” and discusses elementary linguistic units (ELUs), 
which correspond to our constructions, and elementary 
linguistic operations (ELOs), which correspond to the 
operations in our comprehension algorithm. Another paper 
(Scott, 2019) argues that lexical and phrasal processing take 
place in different areas of the brain, corresponding to the 
distinction between these two types of processing in our 
Pattern Memory. It should be possible to search for evidence 
of the construction cycle (Figure 2) and its phases and use of 
memories (Figure 3) in brain data. 

The theory presented here and its implementation are still 
in their infancy. Nevertheless, they provide a working 
prototype that can be used to explore a wide variety of 
questions in human language processing, supporting 
Pylkkänen’s (2019) argument that “More effort should be 
directed toward developing computational models of 
incremental semantic composition.” 
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